Takaisin kaikki kurssit

Deep learning

Yksittäinen kurssi

Max amount of FITech students: 75

Persons without a valid study right at a Finnish university or university of applied sciences have preference to this course.

The course introduces the fundamental and current topics of deep learning.

In every weekly assignment, the students get to train a deep neural network for various tasks including image classification, machine translation, solving reasoning problems, few-shot learning and generative modeling. The course covers the most recent advances (such as unsupervised and self-supervised deep leaning) to give the student a good starting position to do research in this field.

After the course, the student

  • understands the general principles of training deep neural networks (backpropagation, stochastic gradient descent, regularization)
  • knows the most common neural network architectures (convolutional and recurrent neural networks, graph neural networks and transformers)
  • has practical experience in implementing these models from scratch in PyTorch.

Course material

Lecture slides and lecture notes, research papers, online tutorials on PyTorch.

Teaching methods

The lectures are organised in class (voluntary). The material including the lectures will be available online. The exercises are organised via Zoom.

More information in the Aalto University study guide.

You can get a digital badge after completing this course.

koneoppiminen, tekoäly, syväoppiminen, algoritmit, ohjelmointi

Lisätietoa opintojen suorittamisesta

Aalto-yliopisto
Kirsi Viitaharju

Hakua koskevat kysymykset

FITech-verkostoyliopisto
Fanny Qvickström, Opintoasioiden suunnittelija
Aloita tästä
Aloita tästä
Kategoria:
ICT-opinnot
Teema:
Tekoäly ja koneoppiminen
Kurssikoodi:
CS-E4890
Opintopisteet
5 ECTS
Hinta:
0 €
Kurssin taso:
Opetusaika:
28.2.–30.5.2023
Viimeinen hakupäivä:
20.2.2023
Järjestävä yliopisto:
Aalto-yliopisto
Kuka voi hakea:
Aikuisopiskelija,
Tutkinto-opiskelija
Opetustapa:
Verkko-opetus
Opetuskieli:
Englanti
Esitietovaatimukset:
Good knowledge of Python and numpy (important!), basics of linear algebra (vectors, matrices, eigenvalues and eigenvectors) and basics of probability and statistics (sum rule, product rule, Bayes' rule, expectation, mean, variance, maximum likelihood, Kullback-Leibler divergence)
Oletko kiinnostunut tästä kurssista? Tilaa ilmoitus kurssin tietojen muutoksista suoraan sähköpostiisi! Voit peruuttaa tilauksen koska tahansa.

Kurssi sisältyy seuraavaan teemaan