Takaisin kaikki kurssit
Hakuaika on päättynyt
Bayesian data analysis
Yksittäinen kurssi
Max amount of FITech students: 100
Persons without a valid study right at a Finnish university or university of applied sciences have preference to this course.
Mastering the prerequisite skills is very important in order to complete this course.
Course contents
- Bayesian probability theory and bayesian inference
- Bayesian models and their analysis
- Computational methods, Markov-Chain Monte Carlo
Learning outcomes
After the course, the student can
- explain the central concepts in Bayesian statistics, and name steps of the Bayesian modeling process.
- recognize usages for common (i.e. those presented during the course) statistical models, and formulate the models in these situations.
- compare the most popular Bayesian simulation methods, and implement them.
- use analytic and simulation based methods for learning the parameters of a given model.
- estimate the fit of a model to data and compare models.
Teaching schedule
It is possible to take the course online except for the final project presentation which is arranged on campus.
- Lectures will be organized on Mondays at 14:15-16:00 (recording is available after the lecture).
- Exercise sessions (Otaniemi) will be held on Wednesdays, Thursdays and Fridays.
More information on Aalto University’s course page.
You can get a digital badge after completing this course.
Vastuuopettaja
Aalto-yliopisto
Aki Vehtari
aki.vehtari(at)aalto.fi
Lisätietoa opintojen suorittamisesta
Aalto-yliopisto
Tiina Porthén
tiina.porthen(at)aalto.fi
Hakua koskevat kysymykset
FITech-verkostoyliopisto
Fanny Qvickström, Opintoasioiden suunnittelija
info(at)fitech.io
Hakuaika on päättynyt
Aihe:
Tekoäly ja koneoppiminen
Kurssikoodi:
CS-E5710
Opintopisteet
5 ECTS
Hinta:
0 €
Kurssin taso:
Kurssin ajankohta:
2.9.–5.12.2024
Haun alkamispäivä:
05.06.2024
Viimeinen hakupäivä:
Hakuaika on päättynyt
Vastuuyliopisto:
Aalto-yliopisto
Kuka voi hakea:
Aikuisopiskelija,
Tutkinto-opiskelija
Tutkinto-opiskelija
Toteuttamistapa:
Monimuoto-opetus
Paikkakunta:
Espoo
Opetuskieli:
Englanti
Esitietovaatimukset:
Differential and integral calculus, basics of probability and statistics, basics of programming (R or Python). Recommended: matrix algebra.