Takaisin kaikki kurssit

Bayesian data analysis

Yksittäinen kurssi

Max amount of FITech students: 100

Persons without a valid study right at a Finnish university or university of applied sciences have preference to this course.

Mastering the prerequisite skills is very important in order to complete this course.

Course contents

  • Bayesian probability theory and bayesian inference
  • Bayesian models and their analysis
  • Computational methods, Markov-Chain Monte Carlo

Learning outcomes

After the course, the student can

  • explain the central concepts in Bayesian statistics, and name steps of the Bayesian modeling process.
  • recognize usages for common (i.e. those presented during the course) statistical models, and formulate the models in these situations.
  • compare the most popular Bayesian simulation methods, and implement them.
  • use analytic and simulation based methods for learning the parameters of a given model.
  • estimate the fit of a model to data and compare models.

Teaching schedule

It is possible to take the course fully online.

Lectures will be organized on Mondays at 14:15-16:00 (recording is available after the lecture). Exercise sessions (Otaniemi) will be held on Wednesdays, Thursdays and Fridays. 

More information on Aalto University’s course page.

You can get a digital badge after completing this course.

Vastuuopettaja

Aalto-yliopisto
Aki Vehtari

Lisätietoa opintojen suorittamisesta

Aalto-yliopisto
Kirsi Viitaharju

Hakua koskevat kysymykset

FITech-verkostoyliopisto
Fanny Qvickström, Opintoasioiden suunnittelija
Hakuaika on päättynyt
Hakuaika on päättynyt
Kategoria:
ICT-opinnot
Teema:
Tekoäly ja koneoppiminen
Kurssikoodi:
CS-E5710
Opintopisteet
5 ECTS
Hinta:
0 €
Kurssin taso:
Opetusaika:
12.9.–9.12.2022
Viimeinen hakupäivä:
Hakuaika on päättynyt
Järjestävä yliopisto:
Aalto-yliopisto
Kuka voi hakea:
Aikuisopiskelija,
Tutkinto-opiskelija
Opetustapa:
Monimuoto-opinnot,
Verkko-opetus
Paikkakunta:
Espoo
Opetuskieli:
Englanti
Esitietovaatimukset:
Differential and integral calculus, basics of probability and statistics, basics of programming (R or Python). Recommended: matrix algebra.
Oletko kiinnostunut tästä kurssista? Tilaa ilmoitus kurssin tietojen muutoksista suoraan sähköpostiisi! Voit peruuttaa tilauksen koska tahansa.