Takaisin kaikki kurssit

Pervasive data science

Yksittäinen kurssi

Max amount of FITech students: 10

The course provides an advanced understanding of Pervasive Data Science (PDS) as an emerging research field resulting from the intersection of Data Science and Pervasive Computing. The course helps the students to learn the fundamentals, architecture and deployment of Pervasive Data Science systems and deepen their knowledge about the applications and emerging challenges and opportunities of PDS.

The course provides a context for understanding how the knowledge obtained in diverse areas relates to Pervasive Data Science and vice-versa. The development of further competencies depends on personal focus, as such:

  • Sensing: data science, mobile sensing, machine learning, Internet of Things, Big Data Management
  • Pervasive Computing: cloud and edge computing, distributed systems, advanced networking courses

Course contents

Topic 1: Introduction

  • Pervasive Data Science: What is PDS?, Applications and Current direction
  • The sensing pipeline

Topic 2: Data Collection and Feature Engineering

  • Ground Truth
  • Signal Processing
  • PDS measurements

Topic 3: Modelling and Evaluation

  • Data modelling: constraints for modelling, clustering
  • Evaluation: model performance, model evaluation, robustness
  • Deep Learning and Federated Learning

Topic 4: PDS Programming

  • Programming considerations for PDS applications
  • Considerations to implement Deep Learning and Federated Learining applications in Python

Topic 5: Other Topics

  • Privacy and Security

Course material

The course does not follow any coursebook or set of papers, but each lecture is prepared individually. The teaching materials give references for further readings at the end of each lecture slide set.

The exercises are performend on Python and Jupyter notebooks.

Teaching schedule

Lectures on Tue and Thu at 16-18

The sessions will be given by Zoom and will be available in the course webpage for later access.

Completion methods

There is not a exam for this course. The completion of the course is primarily based on a project work and the weekly tasks (around 50%). There are no attendance requirements, but active participation during the sessions will be taken into account.

More information in the University of Helsinki study guide.

You can get a digital badge after completing this course.

Vastuuopettaja

Helsingin yliopisto
Petteri Nurmi, Apulaisprofessori

Lisätietoa kurssista ja suorittamisesta

Helsingin yliopisto
Agustin Zuniga, Tohtorikoulutettava

Hakua koskevat kysymykset

FITech-verkostoyliopisto
Fanny Qvickström, Opintoasioiden suunnittelija
Aloita tästä
Aloita tästä
Kategoria:
ICT-opinnot
Teema:
5G-teknologia
Kurssikoodi:
CSM13107
Opintopisteet:
5 ECTS
Hinta:
0 €
Taso:
Opetusaika:
15.3.–5.5.2022
Viimeinen hakupäivä:
Hakuaika on päättynyt
Järjestävä yliopisto:
Helsingin yliopisto
Kohderyhmä:
Aikuisopiskelija,
Tutkinto-opiskelija
Opetustavat:
Lähiopetus
Opetuspaikkakunta:
Helsinki
Kieli:
Englanti
Esitietovaatimukset:
Basic courses in networking, data structures, programming and mobile sensing. Previous knowledge about Introduction to Internet of Things, Machine Learning, Artificial Intelligence or Data Science is beneficial, but not mandatory to take this course.
Kenelle kurssi sopii:
The course is oriented for those who want to deepen into specific topics about the interaction between Pervasive Computing and Data Science, and their application in the real world.
Oletko kiinnostunut tästä kurssista? Tilaa ilmoitus kurssin tietojen muutoksista suoraan sähköpostiisi! Voit peruuttaa tilauksen koska tahansa.