Back to all courses

Statistical natural language processing

Individual course

Max amount of FITech students: 10

Many core applications in modern information society such as search engines, social media, machine translation, speech processing and text mining for business intelligence apply statistical and adaptive methods. This course provides information on these methods and teaches basic skills on how they are applied on natural language data. Each topic is handled by a high level expert in the area.

Learning outcomes

After attending the course, the student

  • knows how statistical and adaptive methods are used in information retrieval, machine translation, text mining, speech processing and related areas to process natural language contents.
  • can apply the basic methods and techniques used for statistical natural language modeling including, for instance, clustering, classification, Hidden markov models and Bayesian models.

Course material

  • C. Manning, H. Schütze, 1999. Foundations of Statistical Natural Language Processing. The MIT Press
  • Lecture notes

Teaching schedule

Lectures on Tuesdays at 12-14, exercises on Thursdays at 14-16.

The recorded lectures will be available on the course platform. Exercise sessions will be held on campus, but they are not mandatory.

Exercises need to be submitted around 2 weeks after the corresponding lectures. Parts of the project work need to be submitted every few weeks. The final schedule will be decided at the beginning of the course.

Completion methods

Examination and exercise work.

More information in the Aalto University study guide.

You can get a digital badge after completing this course.

Responsible teacher

Aalto University
Mikko Kurimo

Further information about courses and studying

Aalto University
FITech ICT -yhteyshenkilö

Contact person for applications

FITech Network University
Fanny Qvickström, Student services specialist
Start here
Start here
ICT Studies
AI and machine learning
Course code:
0 €
Teaching period:
Application deadline:
Application period has ended
Host university:
Aalto University
Study is open for:
Adult learner,
Degree student
Teaching methods:
Place of contact learning:
General prerequisites:
Basics in machine learning
Study suitable for:
Master students in electrical engineering, doctoral students, adult learners
Interested in this course? Subscribe and get updates about the course directly to your email. You can cancel subscription any time you want.